Purpose
The new RapidArc™ treatment technique, also described as Volumetric Modulated Arc Therapy technique, has the potential to treat patient with improved result in less time than IMRT. One important aspect of this is to ensure the quality in an efficient way, find the cause of any discrepancy and keep the treatment within the limits of the TPS parameters. Delta4, originally developed to improve IMRT QA, was also designed for RapidArc/ VMAT-4DRT and helical tomotherapy. Presented data is from the first test using Delta4 on RapidArc in consideration between fluorescence and Varian.

Method and Materials:
Measurements on a Varian Clinac with RapidArc capability, installed in Varian Medical Systems laboratory in Baden, Switzerland, were performed with a Delta4 QA-device of absolute dose distribution in 4-dimensions resolved in time and each dose pulse was tagged with independently measured gantry angle. The measured dose was grouped into the control points (every 2.2 degree) of the delivery sequence planned with Eclipse. Verification against planned data in 3D using Eclipse TPS were done as well as reproducibility studies.

Purpose
The new RapidArc™ treatment technique, also described as Volumetric Modulated Arc Therapy technique, has the potential to treat patient with improved result in less time than IMRT. One important aspect of this is to ensure the quality in an efficient way, find the cause of any discrepancy and keep the treatment within the limits of the TPS parameters. Delta4, originally developed to improve IMRT QA, was also designed for RapidArc/ VMAT-4DRT and helical tomotherapy. Presented data is from the first test using Delta4 on RapidArc in consideration between fluorescence and Varian.

Measurement using Delta4 to verify a traditional fixed field ARC delivery
A simple test on traditional ARC (fixed field sizes) was done to verify that the Delta4 system correctly measures the dose distribution.

Short term reproducibility for RapidArc delivery system and dosimetry
Short term reproducibility was studied for both measurement system and treatment delivery; gamma index was set to 3% and 1mm.

Results
Generally there was a very good agreement between planned data and measurement using Delta4. Gamma index (3%, 3mm) was generally better than 98%. For the reproducibility gamma index (0.5%, 0.5mm) nearly all measurement were within 100%. Reproducibility could be verified also individually for each control point.

Conclusion
It was shown that Delta4 can be used very efficiently to verify RapidArc delivery; the measurement time is only as long as the delivery time and set-up is very fast, thanks to the 3D measurement array no data is missed. Analysis can be done in a few minutes directly after measurement.

QA must not become the bottle neck in RapidArc clinical implementation!