Objective

Why?
- verification of dose distribution during treatment
- no time needed for pre-treatment measurements

How?
- EPID based with iViewDose (Elekta, Crawley, UK)

Problem
- large tissue inhomogeneity due to air-filled endorectal balloon used to spare part of the rectal wall

Solution
- in aqua vivo approach – developed for lung cancer treatments

Materials and methods

Patients
- 10 hypo-fractionated prostate cancer patients:
 - 5 x 7 Gy to the prostate with/without seminal vesicles
 - 5 x 10 Gy to the dominant intraprostatic lesion (DIL)

Treatment planning
- Pinnacle 9.10/16.0 (Philips, Fitchburg, WI, USA)
- Auto Planning, 2 VMAT arcs of 10 MV photons
- pre-treatment verification on Delta4 phantom (Scandidos, Uppsala, Sweden) - all plans fulfilled clinical criteria

Treatment
- Elekta Agility linear accelerator
- position verification with cone-beam CT, correction for translational errors
- in vivo EPID dose measurements during actual treatment (3 to 5 fractions per patient)

Comparison
- γ evaluation (within 50% isodose surface):
 - percentage of points within 3%/3 mm (Pγ), mean γ
 - conventional analysis vs. the clinical plan
 - in aqua vivo analysis vs. the in aqua plan, i.e. with a density override equal to 1 on the whole CT dataset

Results

TPS dose, EPID-reconstructed dose and γ analysis are shown for both the conventional in vivo method and for the in aqua vivo method (example patient).

- **conventional analysis** (left panel) → disagreement in indicated region (white dotted circle) due to large density inhomogeneity caused by endorectal balloon
- **in aqua vivo analysis** (right panel) → considerable improvement

<table>
<thead>
<tr>
<th>Pt. no.</th>
<th>conventional</th>
<th>in aqua vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pγ ≤1 (%)</td>
<td>mean γ</td>
</tr>
<tr>
<td>1</td>
<td>93.4</td>
<td>0.43</td>
</tr>
<tr>
<td>2</td>
<td>90.7</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td>89.7</td>
<td>0.46</td>
</tr>
<tr>
<td>4</td>
<td>87.9</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td>88.4</td>
<td>0.56</td>
</tr>
<tr>
<td>6</td>
<td>92.7</td>
<td>0.43</td>
</tr>
<tr>
<td>7</td>
<td>88.5</td>
<td>0.52</td>
</tr>
<tr>
<td>8</td>
<td>94.2</td>
<td>0.43</td>
</tr>
<tr>
<td>9</td>
<td>94.4</td>
<td>0.41</td>
</tr>
<tr>
<td>10</td>
<td>89.1</td>
<td>0.52</td>
</tr>
<tr>
<td>total</td>
<td>90.9</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Conclusion

EPID dosimetry with iViewDose can be used for in vivo dose verification of prostate cancer treatments with an endorectal balloon using the in aqua vivo method.

markus.wendling@radboudumc.nl

In vivo EPID dosimetry for prostate cancer treatments with an endorectal balloon

Markus Wendling, Bo Sterckx, Isabell Steinseifer

Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands

Poster presented at: ESTRO38